Clinical Policy Title: Chlamydia screening

Clinical Policy Number: CCP.1343

Effective Date: December 1, 2017
Initial Review Date: October 19, 2017
Most Recent Review Date: November 5, 2019
Next Review Date: March 2021

Coverage policy

Screening for *Chlamydia trachomatis* (*C. trachomatis*) is considered clinically proven, and therefore medically necessary when any of the following criteria are met:

- Non-pregnant female members younger than age 25 who are sexually active or otherwise at increased risk (annually).
- Female members older than age 25 who are at increased risk (annually). Increased risk is defined as a member who has a new sex partner, more than one sex partner, a sex partner with concurrent partners, or a sex partner who has a sexually transmitted infection (U.S. Preventive Services Task Force, 2014).

Limitations:

All other screening for *C. trachomatis* are not medically necessary.

Alternative covered services:

None.
Background

Chlamydia, or *C. trachomatis*, is a bacterium that is transmitted through sexual contact with the penis, vagina, mouth, or anus of an infected partner. The condition can also be spread from an infected mother to the baby during birth, which can cause conjunctivitis or pneumonia in some infants. *C. trachomatis* can lead to cervicitis in women and urethritis and proctitis in men and women. Other consequences associated with *C. trachomatis* include pelvic inflammatory disease, tubal factor infertility, ectopic pregnancy, and chronic pelvic pain (U.S. Centers for Disease Control and Prevention, 2016). Acute and subclinical pelvic inflammatory disease can permanently damage fallopian tubes, uterus, and surrounding tissues, and cause chronic pelvic pain, tubal factor infertility, and potentially fatal ectopic pregnancy (U.S. Centers for Disease Control and Prevention, 2018). An estimated 35% of pelvic inflammatory disease in United Kingdom females ages 16 – 44 years was caused by *C. trachomatis*; this figure rises to 53.5% for women ages 16 – 19 (Price, 2016a).

The World Health Organization estimates the number of annual new cases of *C. trachomatis* to be 131 million, with a prevalence of 4.2% (Newman, 2015). In the United States the number of reported new cases was 1,598,354 in 2016, with an estimated actual number of new cases at 2.86 million annually (U.S. Centers for Disease Control and Prevention, 2016). Large rises have occurred in the number of cases (+55%) and the rate per 100,000 population (+44%) in the past decade, with an increase reported each year.

About 90% of cases are diagnosed at ages 15 – 34 (mostly ages 15 – 24), and two-thirds are females. Large disparities exist in incidence rates per 100,000 among major racial or ethnic groups, including blacks (1125.9), Hispanics (374.9), whites (199.8), and Asians (119.3) in 2016 (U.S. Centers for Disease Control and Prevention, 2018). More specifically, U.S. prevalence percentages in those targeted for screening are as high as 4.7% for sexually active females ages 14 – 24 (13.5% among non-Hispanic black females) from 2007 – 2012 (Torrone, 2014).

Most infected people with *C. trachomatis* have no symptoms or physical findings for considerable periods of time, making the disease difficult to treat promptly and underlining the need for a strong screening effort. Infections are found in the cervix, urethra, and the upper respiratory tract in females, and in the urethra and testicles in men. Rectal symptoms can occur in both genders, and the infection can be found in the throats of both women and men, usually asymptomatic (U.S. Centers for Disease Control and Prevention, 2018).

C. trachomatis can lead to peri-hepatitis, or “Fitz-Hugh-Curtis Syndrome,” in which the liver capsule is inflamed and pain is present in the right upper quadrant. Arthritis, along with urethritis and conjunctivitis, may also be a result of the bacterium. The risk of acquiring the human immunodeficiency virus is raised by the presence of *C. trachomatis*. Newborns of infected mothers have greater risk of preterm delivery, conjunctivitis, and pneumonia. A review of 12 studies calculated elevated risk from presence of *C. trachomatis* of 35% for preterm labor, 52% for low birth weight, and 84% for perinatal...
mortality, all significant. *C. trachomatis* was not associated with elevated risk for premature membrane rupture, abortion, and postpartum endometritis (Silva, 2011).

A variety of tests are used to diagnose chlamydia, including nucleic acid amplification tests and cell cultures. The most common methods of diagnosis are vaginal swabs for females and urine samples for males; urine samples can also be used for women. Rectal and pharyngeal swabs are also used.

A seven-day course of antibiotics is the preferred treatment for people with *C. trachomatis*, including infants. Abstinence is advised until the course is complete. Treatment removes the infection, but not permanent damage from the disease. Retesting is recommended in three months (U.S. Centers for Disease Control and Prevention, 2018).

Screening for *C. trachomatis* is important, since many cases have no obvious symptoms. Young people should be a focus; a national survey revealed 91.5% of female Medicaid recipients women ages 18 – 25 self-reported to be sexually active (Tao, 2015). The Affordable Care Act required private insurers issuing or renewing plans starting September 23, 2010, to provide certain preventive services recommended by the U.S. Preventive Services Task Force, including chlamydia for sexually active women under 25 years and older at-risk women (Loosier, 2014).

Searches

AmeriHealth Caritas searched PubMed and the databases of:

- UK National Health Services Centre for Reviews and Dissemination.
- Agency for Healthcare Research and Quality.
- The Centers for Medicare & Medicaid Services.
- The Cochrane library.

We conducted searches on September 3, 2019. Search terms were: “chlamydia,” and “*C. trachomatis.*”

We included:

- **Systematic reviews**, which pool results from multiple studies to achieve larger sample sizes and greater precision of effect estimation than in smaller primary studies. Systematic reviews use predetermined transparent methods to minimize bias, effectively treating the review as a scientific endeavor, and are thus rated highest in evidence-grading hierarchies.
- **Guidelines based on systematic reviews.**
- **Economic analyses**, such as cost-effectiveness, and benefit or utility studies (but not simple cost studies), reporting both costs and outcomes — sometimes referred to as efficiency studies — which also rank near the top of evidence hierarchies.

Findings
The U.S. Preventive Services Task Force recommended screening for *C. trachomatis* for all sexually active and other at-risk women under age 25 who are not pregnant, along with older, non-pregnant women at risk. No recommendation could be made for women age 25 and older at risk, regardless of whether they are pregnant. Sufficient evidence was not found to recommend when males should be screened for *C. trachomatis* (LeFevre, 2014; U.S. Preventive Services Task Force, 2014). The National Institute for Health and Care Excellence has also issued a guideline that only covered populations under 18 (National Institute for Health and Care Excellence, 2007).

The U.S. Centers for Disease Control and Prevention concurred with the Task Force, stating sexually active women younger than 25 and older women with risk factors should be screened annually. The Centers also specified that pregnant women should be screened at the first prenatal visit and in the third trimester. It indicated screening should be considered (but not recommended) for sexually active men having sex with men, human immunodeficiency virus-positive men, men with persistent high-risk behavior, or men with partners who have multiple partners (U.S. Centers for Disease Control and Prevention, 2015a; U.S. Centers for Disease Control and Prevention, 2015b). The Health Plan Employer Data and Information Set administered by the National Committee for Quality Assurance measures the percentage of female members in a plan who are ages 16 – 24, identified as sexually active who had at least one *C. trachomatis* test during the past year (National Committee for Quality Assurance, 2016).

A Cochrane review of six trials (*n* = 359,078) addressed the effectiveness of *C. trachomatis* screening. After three yearly screening invitations (*n* = 317,304), no change was observed in chlamydia test positivity between intervention and control groups (4.1% versus 4.3%). After four years of screening, chlamydia prevalence (*n* = 4,465) was significantly (28%) lower. Screening was linked with a reduction in pelvic inflammatory disease 12 months later (*n* = 21,686). Epididymitis risk in 14,980 invited men was 20% lower (not significant) than those not invited after 12 months (Low, 2016).

Health Plan Employer Data and Information Set data compiled by the National Committee for Quality Assurance show that 2017 screening rates of members differ according to type of plan. The data displayed here show Medicaid Health Maintenance Organization plans had the highest rates of screening, followed by commercial Health Maintenance Organization and commercial Preferred Provider Organization plans (National Committee for Quality Assurance, 2019):

<table>
<thead>
<tr>
<th></th>
<th>Women ages 16 – 20</th>
<th>Women ages 21 – 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicaid Health Maintenance Organization</td>
<td>54.2</td>
<td>63.7</td>
</tr>
<tr>
<td>Commercial Health Maintenance Organization</td>
<td>43.7</td>
<td>54.0</td>
</tr>
</tbody>
</table>
From 2001 to 2014, the percentage of sexually active women aged 16 – 24 enrolled in a commercial health maintenance organization rose from 23.1% to 47.0%. For women the same age covered by Medicaid, the rate rose from 40.4% to 58.0% from 2001 to 2011, then fell slightly to 54.6% in 2014 (U.S. Centers for Disease Control and Prevention, 2013).

The Group Health Cooperative of Seattle increased female testing rates by 23% from 1997 – 2007. While the C. trachomatis rate rose 79% (449 to 806 cases per 100,000 person-years), pelvic inflammatory disease rate declined 43% (823 to 473 cases per 100,000 person-years, \(P < .01 \)). Male chlamydia rates more than doubled, from 91 to 218 cases per 100,000 person-years (Scholes, 2012). In then states, of 261,000 Medicaid-insured women ages 15-25 classified as sexually active, the C. trachomatis testing rate was 45.6% and 57.5% for white and black women, and 63.5% and 46.8% for women diagnosed and not diagnosed with a sexually transmitted disease the prior year (Patel, 2016).

The risks of not screening at-risk population segments has also been addressed by the U.K. National Chlamydia Screening Programme, begun in 2003. An untreated C. trachomatis infection results in pelvic inflammatory disease in 17.1% of cases, and salpingitis in 7.3% of cases (Price, 2016b).

A lengthy debate has been in progress on whether men having sex with men constitute an at-risk population for chlamydia. A systematic review of 12 studies failed to demonstrate that screening of this group resulted in lower prevalence of the disease (i.e., some showed a higher prevalence, others a lower prevalence) (Tsoumanis, 2018).

A systematic review of 25 programs, eight each in the U.S. and Australia, found screening targeted mostly at people ages 15 – 29, men who have sex with men, and sex workers, produced a C. trachomatis rate of 7.7%. Participation rates in community centers, sporting venues, and bars were high, while streets, public community areas, and sex on premises venues had low rates (Hengel, 2013).

A systematic review/meta-analysis of 19 studies determined infertility was significantly more prevalent (odds ratio = 2.2) in people with C. trachomatis. In 15 studies, significance (odds ratio = 4.9 and 3.3 for males and females) was documented for asymptomatic patients with C. trachomatis than those without. The study called for screening and treatment focused on asymptomatic patients (Ahmadi, 2016).

A worldwide review of 27 studies of over 47,000 students found a median positivity of 4.7% for C. trachomatis, and a 100% median treatment rate. Two studies reported repeat positivity rates — 21.1% and 26.3% — and thus more outcomes need to be reported in school screening (Jamil, 2014). A study of 4,093 male students at the University of Pennsylvania revealed C. trachomatis positivity of 3.1% and 3.7% for those screened using urogenital and extragenital methods; 26.4% of cases would have been missed if screening had only used urogenital methods (Drinkard, 2017).
A recent Cochrane review of 15 studies (n = 1,754) assessed efficacy of antibiotics to treat *C. trachomatis*. All drugs had significantly greater cure rates than placebo. The drugs amoxicillin, erythromycin, clindamycin, and azithromycin had similar outcomes to each other in cure, repeat infection, and pregnancy complications (preterm birth, preterm rupture of membranes, low birthweight). Erythromycin was observed to have more side effects than azithromycin and clindamycin (Cluver, 2017). Another study found a modest improved efficacy for doxycycline versus azithromycin (Kong, 2014). A systematic review of 14 studies showed that azithromycin was less effective than doxycycline in men with *C. trachomastis*, but no conclusions could be drawn in women (Paez-Canro, 2019).

New information about the hazards of *C. trachomatis* is still emerging. A meta-analysis of 22 studies with 4,291 cervical cancer cases and 7,628 controls included five studies that concluded *C. trachomatis* was significantly linked to elevated risk of cervical cancer risk in prospective and retrospective studies ($P < .001$), which had been a controversial research topic (Zhu, 2016).

A systematic review of 33 articles on *C. trachomatis* and other sexually transmitted diseases found many commercially used tests had specificities over 90%, but sensitivities under 50%. In 2010, the Chlamydia Rapid Test, a new point-of-service test, showed limited sensitivity (52% – 64%) but high specificity (97%) in detecting the disease (Hislop, 2010). Since then, greater accuracy of point-of-service tests have been reported, offering potential improvements in care since results can be obtained minutes after the test, while the patient is still in the office (Herbst de Cortina, 2016).

A systematic review of nine studies (n = 10,280) addressing sensitivity of antigen detection rapid point-of-care tests was conducted. Sensitivity for these tests were 53%, 37%, and 63% for cervical, vaginal, and male urine swabs. Sensitivity and specificity of near-patient nucleic acid amplification test for all specimen types were greater than 98% and 99.4 %. While point-of-care tests return results quickly, they have low sensitivity; nucleic acid amplification, while having higher sensitivity, requires electricity, takes an average of 90 minutes to perform, and is costlier than point-of-care tests (Kelly, 2017).

A systematic review of four articles (n = 591) showed that women with threatened spontaneous preterm labor had a significantly higher rate of *C. trachomatis* than did controls, namely 9% versus 1%, leading authors to suggest that women in this group be screened for the disease (Kanninen, 2019).

C. trachomatis can be tested at home. A Cochrane review of 10 studies (n = 10,479) found specimens collected at home had a statistically lower percentage with a positive test than those at a clinic, or 11.6% versus 18.5%; authors called for comparisons of outcomes between the two groups (Fajardo-Bernal, 2015). A systematic review of seven trials showed home based screening improved uptake, and was preferred by subjects (Odesanmi, 2013), which matched the finding of an earlier study of 19,773 screening invitations in the U.K. (Low, 2007). A review of 21 studies (n = 6,100) compared sensitivity and specificity of self-collected vaginal swabs versus clinically collected cervical swabs for females (92% and 98%), and urine self-samples versus urethra clinician collected samples (88% and 99%). Authors state data support vaginal swab as the recommended specimen in home-based screening (Lunny, 2015).
People being treated for chlamydia should refrain from sexual contact for seven days, and their sexual partners from the past 60 days should be treated. Treatment of sexual partners prevents reinfection and limits further transmission. Sexual partners may be referred for free treatment to local public health authorities.

When a heterosexual partner is unlikely to seek timely evaluation and treatment, the U.S. Centers for Disease Control and Prevention and the American College of Obstetricians and Gynecologists consider expedited partner therapy as a useful option, especially for male partners of females treated for gonorrhea or chlamydia. This approach involves the treatment of sex partners of patients diagnosed with chlamydia or gonorrhea by providing prescriptions or medications to the patient to take to his or her partner without prior examination of the partner (American College of Obstetricians and Gynecologists, 2018; U.S. Centers for Disease Control and Prevention, 2019).

The U.S. Centers for Disease Control and Prevention does not recommend expedited partner therapy for men who have sex with men. While ongoing evaluation of expedited partner therapy is needed, it should be available as an option for managing the treatment of partners. It is not intended to replace “other strategies such as provider-assisted referral, when available” (U.S. Centers for Disease Control and Prevention, 2018). Expedited partner therapy is not allowed in every state. The current legal status of expedited partner therapy may be found at www.cdc.gov/std/ept/legal/default.htm. The American Academy of Family Physicians supports expedited partner therapy and recommends that clinicians should determine state legal requirements (American Academy of Family Physicians, 2017).

Policy updates:

A total of three guidelines/other and two peer-reviewed references were added to, and two guidelines/other removed from this policy in September, 2019.

References

Professional society guidelines/other:

U.S. Centers for Disease Control and Prevention. Chlamydia – CDC Fact Sheet (Detailed).

U.S. Centers for Disease Control and Prevention. 2015 Sexually Transmitted Diseases Treatment Guideline.

U.S. Centers for Disease Control and Prevention. Chlamydia screening data, HEDIS, and managed care.

U.S. Centers for Disease Control and Prevention. Expedited Partner Therapy.

Peer-reviewed references:

Centers for Medicare & Medicaid National Coverage Determinations:

210.10. Screening for SEXUALLY TRANSMITTED Infections (STIs) and High-Intensity Behavioral Counseling (HIBC) to Prevent STIs.

Local Coverage Determinations:
No Local Coverage Determinations identified as of the writing of this policy.

Commonly submitted codes

Below are the most commonly submitted codes for the service(s)/item(s) subject to this policy. This is not an exhaustive list of codes. Providers are expected to consult the appropriate coding manuals and bill accordingly.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>87110</td>
<td>Culture, chlamydia, any source</td>
<td></td>
</tr>
<tr>
<td>87270</td>
<td>Infectious agent antigen detection by immunofluorescent technique; Chlamydia trachomatis</td>
<td></td>
</tr>
<tr>
<td>87320</td>
<td>Infectious agent antigen detection by immunoassay technique, (eg, enzyme immunoassay [EIA], enzyme-linked immunosorbent assay [ELISA], immunochemiluminometric assay [IMCA]) qualitative or semiquantitative, multiple-step method; Chlamydia trachomatis</td>
<td></td>
</tr>
<tr>
<td>87490</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Chlamydia trachomatis, direct probe technique</td>
<td></td>
</tr>
<tr>
<td>87491</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Chlamydia trachomatis, amplified probe technique</td>
<td></td>
</tr>
<tr>
<td>87492</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Chlamydia trachomatis, quantification</td>
<td></td>
</tr>
<tr>
<td>87810</td>
<td>Infectious agent antigen detection by immunoassay with direct optical observation; Chlamydia trachomatis</td>
<td></td>
</tr>
<tr>
<td>87998</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA), not otherwise specified; amplified probe technique, each organism</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICD-10 Code</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z11.3</td>
<td>Encounter for screening for infections with a predominantly sexual mode of transmission</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Level II Code</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>No Applicable codes</td>
<td></td>
</tr>
</tbody>
</table>

Appendix

No additional information was identified for this section during the writing of this policy.